Correlation and Cause and Effect

Respond to the following in a minimum of 175 words:

Models help us describe and summarize relationships between variables. Understanding how process variables relate to each other helps businesses predict and improve performance. For example, a marketing manager might be interested in modeling the relationship between advertisement expenditures and sales revenues.

Don't use plagiarized sources. Get Your Custom Essay on
Correlation and Cause and Effect
Just from $13/Page
Order Essay

Consider the dataset below and respond to the questions that follow:

Advertisement ($’000)   Sales ($’000)

1068    4489

1026    5611

767      3290

885      4113

1156    4883

1146    5425

892      4414

938      5506

769      3346

677      3673

1184    6542

1009    5088

  • Construct a scatter plot with this data.
  • Do you observe a relationship between both variables?
  • Use Excel to fit a linear regression line to the data. What is the fitted regression model? (Hint: You can follow the steps outlined on page 497 of the textbook.)
  • What is the slope? What does the slope tell us?Is the slope significant?
  • What is the intercept? Is it meaningful?
  • What is the value of the regression coefficient,r? What is the value of the coefficient of determination, r^2? What does r^2 tell us?
  • Use the model to predict sales and the business spends $950,000 in advertisement. Does the model underestimates or overestimates ales?

(1) Explain the difference between correlation and cause and effect. Give examples to explain each concept.

(2) Explain the difference between simple linear regression and multiple regression. Give examples to explain each concept.

(3) What does a scatter plot tell us? What does a scatter plot not able to tell us? How do you determine that a scatter plot might be helpful in visualizing the overall outcome?

(4) Why do you think that regression analysis is used more in the workplace more often than cause and effect?

ORDER NOW »»

and taste our undisputed quality.