CALCULUS

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Provide an appropriate response.

Don't use plagiarized sources. Get Your Custom Essay on
CALCULUS
Just from $13/Page
Order Essay

1) Given that f(x) = (x/7 - x), find f(- (4/5)). Express the answer as a simplified fraction. 1) _______

 

A) – (4/39) B) (39/4) C) – (39/4) D) (4/39)

 

 

Use the graph to evaluate the indicated limit and function value or state that it does not exist.

 

2) Find (x→0) is under (lim)f(x) and f(0).

 2) _______

 

A) Does not exist; 6 B) 6; 0 C) 0; does not exist D) 0; 6

 

 

Find the limit, if it exists.

 

3) Find: (x→-1) is under (lim) (6x + 5/5x - 6) 3) _______

 

A) -11 B) (1/11) C) 1 D) – (1/11)

 

 

4) Given(x→4) is under (lim)f(x) = -2 and(x→4) is under (lim) g(x) = 5, find(x→4) is under (lim) ([g(x) - f(x)]/- 4 f(x)). 4) _______

 

A) – (3/8) B) – (7/8) C) (3/8) D) (7/8)

 

 

 

 

 

Sketch a possible graph of a function that satisfies the given conditions.

 

5) f(1) = 4; (x→(1) with superscript (-)) is under (lim)f(x) = 4; (x→(1) with superscript (+)) is under (lim)f(x) = 3

 

 5) _______

 

 

A)

 

B)

 

C)

 

D)

 

 

 

Find the limit, if it exists.

 

6) Find: (h→0) is under (lim) (f(7 + h) - f(7)/h) for f(x) = -x + 1. 6) _______

 

A) 1 B) 0 C) -1 D) Does not exist

 

 

Solve the problem.

 

7) A company training program determines that, on average, a new employee can do P(x) pieces of work per day after s days of on-the-job training, where P(x) = (90 + 60x/x + 5). Find (x→5) is under (lim)P(x). 7) _______

 

A) 42 B) 105 C) 30 D) Does not exist

 

 

 

Use the given graph to find the indicated limit.

 

8)

Find(x→ ∞) is under (lim)f(x). 8) _______

 

A) 4 B) -∞ C) ∞ D) 3

 

 

9)

Find(x→ -∞) is under (lim)f(x). 9) _______

 

A) ∞ B) 4 C) 3 D) -∞

 

 

 

Find the limit.

 

10) Determine the limit.

(x → - (10) with superscript ( -)) is under (lim)f(x), where f(x) = (1/x + 10)

10) ______

 

A) 0 B) -1 C) -∞ D) ∞

 

Provide an appropriate response.

 

11) If the limit at infinity exists, find the limit.

(x → ∞) is under (lim) (5(x) with superscript (2) + 7x - 9/- 6(x) with superscript (2) + 2) 11) ______

 

A) ∞ B) 0 C) – (5/6) D) – (2/9)

 

 

Use -∞ or ∞ where appropriate to describe the behavior at each zero of the denominator and identify all vertical asymptotes.

 

12) g(x) = (x/6 - x) 12) ______

 

A) (x → (6) with superscript (-)) is under (lim)f(x) = ∞; (x → (6) with superscript (+)) is under (lim)f(x) = -∞; x = 6 is a vertical asymptote

B) (x → (6) with superscript (-)) is under (lim)f(x) = ∞; (x → (6) with superscript (+)) is under (lim)f(x) = -∞; x = 0 is a vertical asymptote

C) (x → (6) with superscript (-)) is under (lim)f(x) = -∞; (x → (6) with superscript (+)) is under (lim)f(x) = -∞; x = 6 is a vertical asymptote

D) (x → (6) with superscript (-)) is under (lim)f(x) = -∞; (x → (6) with superscript (+)) is under (lim)f(x) = ∞; x = 6 is a vertical asymptote

 

 

 

Provide an appropriate response.

 

13) Find the vertical asymptote(s) of the graph of the given function.

 

f(x) = (3x - 9/5x + 30) 13) ______

 

A) y = 8 B) y = -3 C) x = -6 D) x = -8

 

 

 

14) Find the vertical asymptote(s) of the graph of the given function.

f(x) = ((x) with superscript (2) - 100/(x - 9)(x + 3)) 14) ______

 

A) y = 9, y = -3 B) x = 10, x = -10 C) x = 9, x = -3 D) x = -9

 

 

 

 

 

 

Solve the problem.

 

15) Suppose that the value V of a certain product decreases, or depreciates, with time t, in months, where

V(t) = 23 – (16(t) with superscript (2)/((t + 2)) with superscript ( 2)).

Find (t→∞) is under (lim)V(t). 15) ______

 

A) 19 B) 23 C) 16 D) 7

 

 

 

Sketch a possible graph of a function that satisfies the given conditions.

 

16) f(0) = 6 and (x → 0) is under (lim)f(x) = 6

 16) ______

 

A)

B)

C)

 

 

 

D)

 

 

The graph of y = f(x) is shown. Use the graph to answer the question.

 

17) Is f continuous at x = -1?

 17) ______

 

A) Yes B) No

 

 

Provide an appropriate response.

18) Determine where the function H(x) = ((x) with superscript (2) + 7/(x) with superscript (2) + x - 6) is continuous. 18) ______

 

A) (-∞, -3) ∪ (-3, 2) ∪ (2, ∞) B) (-∞, -3) C) (-3, 2) ∪ (2, ∞) D) (-∞, -3) ∪ (-3, 2)

 

 

19) Determine where the function f(x) = (5x/2x - 3) is continuous. 19) ______

 

A) (-∞, (3/2)) B) (-∞, (3/2)) ∪ ((3/2), ∞) C) ((3/2), ∞) D) (-∞, ∞)

 

 

20) Determine the x-values, if any, at which the function is discontinuous.

h(x) = {table ( ((x) with superscript (2) - 9 for x < -1)(0 for -1 ≤ x ≤ 1)((x) with superscript (2) + 9 for x > 1) ) 20) ______

 

A) -1, 0, 1 B) -1, 1 C) 1 D) None

 

21) Solve the inequality and express the answer in interval notation: ((x) with superscript (2) - 4x/x + 5) > 0. 21) ______

 

A) (-5, ∞) B) (-5, 0) ∪ (4, ∞) C) (4, ∞) D) (-5, 0)

 

 

22) Use a sign chart to solve the inequality. Express answers in interval notation.

 

(x) with superscript (2) > 16 22) ______

 

A) (-4, 4 ) B) (4, ∞) C) (-4, ∞) D) (-∞, -4) ∪ (4, ∞)

 

 

 

Solve the problem.

 

23) The cost of renting a snowblower is $20 for the first hour (or any fraction thereof) and $5 for each additional hour (or fraction thereof) up to a maximum rental time of 5 hours. Write a piecewise definition of the cost C(x) of renting a snowblower for x hours. Is C(x) continuous at x = 2.5?

 

23) ______

 

A) C(x) = table ( (20 if 0 < x ≤ 1)(25 if 1 < x ≤ 2)(30 if 2 < x ≤ 3)(35 if 3 < x ≤ 4)(40 if 4 < x ≤ 5) ); Yes

 

B) C(x) = table ( (20 if 0 < x ≤ 1)(25 if 1 < x ≤ 2)(30 if 2 < x ≤ 3)(35 if 3 < x ≤ 4)(40 if 4 < x ≤ 5) ); No

 

C) C(x) = table ( (20 if 0 ≤ x ≤ 1)(25 if 1 ≤ x ≤ 2)(30 if 2 ≤ x ≤ 3)(35 if 3 ≤ x ≤ 4)(40 if 4 ≤ x ≤ 5) ); No

 

D) C(x) = table ( (25 if 0 < x ≤ 1)(30 if 1 < x ≤ 2)(35 if 2 < x ≤ 3)(40 if 3 < x ≤ 4)(45 if 4 < x ≤ 5) ); No

ORDER NOW »»

and taste our undisputed quality.